Pyrraline is a quantitatively dominating glycation compound of the advanced Maillard reaction in foods and can be found in urine after consumption of pyrraline-containing food items. The purpose of this study was to investigate the transport of pyrraline and its dipeptide derivatives alanylpyrraline (Ala-Pyrr) and pyrralylalanine (Pyrr-Ala) at intestinal and renal cell lines. Pyrraline inhibited the l-[(3)H]lysine uptake with IC(50) values of 0.3 mM (Caco-2 cells) and 3.5 mM (OK cells), respectively, but not the uptake of [(14)C]Gly-Sar (Caco-2 and SKPT cells). In contrast, Ala-Pyrr strongly inhibited the uptake of [(14)C]Gly-Sar in Caco-2 and SKPT cells with IC(50) values of 0.19 and 0.017 mM, respectively. Pyrr-Ala inhibited the carrier-mediated uptake of [(14)C]Gly-Sar in Caco-2 and SKPT cells by 50% at concentrations of 0.03 and 0.008 mM, respectively. The transepithelial flux of peptide-bound pyrraline across Caco-2 cell monolayers was up to 15-fold higher compared to the flux of free pyrraline. We conclude that free pyrraline is not a substrate for the intestinal lysine transporter and that the absorption of dietary pyrraline occurs most likely in the form of dipeptides rather than as the free amino acid.