Persistent decline in longitudinal and radial strain after coronary microembolization detected on velocity encoded phase contrast magnetic resonance imaging

J Magn Reson Imaging. 2009 Jul;30(1):69-76. doi: 10.1002/jmri.21773.

Abstract

Purpose: To use velocity-encoded phase contrast (PC) MRI in assessing the effect of coronary microembolization on longitudinal and radial myocardial strain.

Materials and methods: A combined X-ray and MR system (XMR) was used for selective left anterior descending artery catheterization and microinfarct assessment in swine (n = 6). The embolized area at risk was defined on perfusion MRI followed by administration of a 7500 count (size = 100-300 microm) of the embolic agent. Quantification of strain and microinfarction was performed at 1 h and 1 week using PC-MRI and delayed enhancement (DE) MRI, respectively. At postmortem, sliced hearts were stained to define microinfarction.

Results: Baseline longitudinal and radial strain did not differ between area-at-risk and remote myocardium. The embolized territory (area at risk) showed significant decline in longitudinal strain from -11.5 +/- 3.2% to 1.8 +/- 2.5% at 1 h (P < 0.05) and -3.9 +/- 1.1% at 1 week (P < 0.05). Similarly, regional radial strain progressively declined from 23.6 +/- 2.5% at baseline to 12.5 +/- 3.7% at 1 h (P < 0.05) and 4.8 +/- 5.0% at 1 week (P < 0.01). The size of microinfarction was not significantly different between DE-MRI and histochemical staining.

Conclusion: PC-MRI is sensitive in assessing changes in regional longitudinal and radial strain after coronary embolization. Longitudinal and radial strain of the hyperenhanced patchy microinfarction demonstrates persistent decline over the course of 1 week.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Contrast Media
  • Embolization, Therapeutic / adverse effects*
  • Heart / diagnostic imaging
  • Heart / physiopathology*
  • Heterocyclic Compounds
  • Image Enhancement / methods
  • Image Processing, Computer-Assisted / methods
  • Iohexol
  • Magnetic Resonance Imaging / methods*
  • Magnetic Resonance Imaging, Cine / methods
  • Microspheres
  • Myocardial Infarction / diagnostic imaging
  • Myocardial Infarction / etiology*
  • Myocardial Infarction / pathology*
  • Myocardial Infarction / physiopathology
  • Myocardium / pathology
  • Myocardium / ultrastructure
  • Organometallic Compounds
  • Radiography
  • Risk Factors
  • Sensitivity and Specificity
  • Stress, Physiological
  • Swine
  • Time Factors

Substances

  • Contrast Media
  • Heterocyclic Compounds
  • Organometallic Compounds
  • Iohexol
  • gadolinium 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetate