Stromal cells residing in murine fetal livers have the ability to promote the hepatic maturation of murine embryonic stem cells (ESCs) and hepatic progenitor cells (HPCs) 3848 in vitro. These stromal cells were isolated as the CD49f(+/-)CD45(-)Thy1(+)gp38(+) cell fraction. The present study established a murine fetal liver stromal cell line that induced hepatic maturation in mouse ESCs and HPCs. A transgene containing a temperature-sensitive SV40 large T antigen was transfected into the primary fetal liver stromal cells. These immortalized cells, which were named as the gp38-positive and Thy1-positive murine liver stromal (MLSgt) cells, induced both mouse ESCs and HPCs to differentiate into mature hepatocyte-like cells using a coculture method. Since MLSgt is not a cloned cell line, one clone, MLSgt20, was selected as a line with the characteristic to induce hepatic differentiation, which was comparable to its parental stromal cells. The ESC-derived endoderm cells cocultured with the MLSgt20 cells expressed mature hepatocyte-specific gene markers, including glucose-6-phosphatase, tyrosine aminotransferase, tryptophan 2,3-dioxgenase, and cytochrome P450 (CYP1a1, Cyp1b1, Cyp1a2, and Cyp3a11). In addition, these cells also exhibited hepatic functions, such as glycogen storage and ammonia metabolism. Transmission electron microscopy showed that the cocultured ESCs expressed the morphologic features of mature hepatocytes. In conclusion, a cell line was established that has the characteristic to promote the hepatic maturation of mouse ESCs and HPCs by a coculture method.