Although primary brain tumors (PBTs) are generally considered to be a multifactorial disorder, understanding the genetic basis and etiology of the disease is essential for PBT risk assessment. Understanding of the genetic susceptibility for PBT has come from studies of rare genetic syndromes, linkage analysis, family aggregation, early-onset pediatric cases, and mutagen sensitivity. There are currently no effective markers to assess biological dose of exposures and genetic heterogeneity. The priorities recently recommended by the Brain Tumor Epidemiology Consortium emphasized the need for expanding research in genetics and molecular epidemiology. In this article, we review the literature to identify molecular epidemiologic case-control studies of PBTs that were hypothesis-driven and focused on four hypothesized candidate pathways: DNA repair, cell cycle, metabolism, and inflammation. We summarize the results in terms of genetic associations of single nucleotide polymorphisms of these pathways. We also discuss future research directions based on available evidence and technologies, and conclude that high resolution whole genome approach with significantly large sample size could rapidly advance our understanding of the genetic etiology of PBTs. Literature searches were done on PubMed in March 2009 with the terms glioma, glioblastoma, brain tumor, association, and polymorphism, and we only reviewed English language publications.