Pharmacological properties of ATP-sensitive purinergic receptors expressed in human G292 osteoblastic cells

Eur J Pharmacol. 2009 Sep 1;617(1-3):12-6. doi: 10.1016/j.ejphar.2009.06.049. Epub 2009 Jul 2.

Abstract

We characterized the pharmacological properties of P2 receptors expressed in G292 osteoblastic cells by studying the responses or changes in intracellular Ca(2+) level to P2 receptor agonists, antagonists and modulators. ATP induced robust responses in a concentration-dependent manner with EC(50) of 0.5+/-0.07 microM. While alpha,beta-methylene-ATP (alphabetameATP) and 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) were ineffective, ADP mimicked the action of ATP with EC(50) of 0.7+/-0.2 microM. UTP and UDP also evoked responses with EC(50) of 2.0+/-0.4 microM and 0.5+/-0.1 microM respectively, but their responses were much smaller, resulting in an order of the response magnitude: ATP~ADP>>UTP~UDP. The responses evoked by ATP and ADP were blocked by pyridoxal-5'-phosphate-6-azophenyl-2,4,-disulfonate (PPADS) with IC(50) of 3.0+/-0.05 microM and 5.0+/-0.4 microM respectively, but not by suramin up to 30 microM. ATP-evoked responses were insensitive to inhibition by trinitrophenyl-ATP (TNP-ATP) and brilliant blue G. ADP-evoked responses were significantly inhibited by 2'-deoxy-N(6)-methyladenosine-3',5'-biphosphate (MRS2179) and 2-chloro-N(6)-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphate (MRS2279) with IC(50) of 48+/-1.9 microM and 7.7+/-0.9 microM respectively. Taken together, these results provide strong evidence for functional expression of ATP-sensitive P2Y receptors and particularly P2Y(1)-like receptor in G292 cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / pharmacology*
  • Animals
  • Calcium / metabolism
  • Cell Line
  • Gene Expression Regulation*
  • Humans
  • Hydrogen-Ion Concentration
  • Intracellular Space / drug effects
  • Intracellular Space / metabolism
  • Metals, Heavy / pharmacology
  • Osteoblasts / cytology
  • Osteoblasts / drug effects*
  • Osteoblasts / metabolism*
  • Purinergic P2 Receptor Agonists
  • Purinergic P2 Receptor Antagonists
  • Receptors, Purinergic P2 / metabolism*

Substances

  • Metals, Heavy
  • Purinergic P2 Receptor Agonists
  • Purinergic P2 Receptor Antagonists
  • Receptors, Purinergic P2
  • Adenosine Triphosphate
  • Calcium