Motor unit firing variability and synchronization during short-term light-load training in older adults

Exp Brain Res. 2009 Aug;197(4):337-45. doi: 10.1007/s00221-009-1920-4. Epub 2009 Jul 4.

Abstract

We compared motor unit synchronization and firing rate variability within and across synergistic hand muscles during a pinching task following short-term light-load training to improve force steadiness in older adults. A total of 183 motor unit pairs before training and 158 motor unit pairs after training were recorded with intramuscular fine-wire electrodes within and across the first dorsal interosseous (FDI) and adductor pollicis (AdP) muscles during a pinch task performed by ten older adults before and after a 4-week short-term light-load training program. Nine younger adults performed the same experimental sessions 4 weeks apart with no training intervention. Two-minute sustained contractions of 2, 4, 8, and 12% maximal voluntary contraction (MVC) were performed with the non-dominant hand. The coefficient of variation (CV) of force was greater in older than in younger adults and was lower at the 2 and 4% MVC levels in both the finger (0.12 +/- 0.01 vs. 0.08 +/- 0.01, and 0.08 +/- 0.01 vs. 0.05 +/- 0.01, respectively) and thumb (0.11 +/- 0.01 vs. 0.08 +/- 0.01, and 0.09 +/- 0.01 vs. 0.05 +/- 0.01, respectively) compared to higher force levels following training in the older adults. There were no changes in CIS or k'-1 values following training. Motor unit firing rate variability significantly decreased at low force levels in the FDI muscle and also tended to decrease with training in the AdP muscle (p = 0.06). No changes occurred in the younger control group. These findings are the first to show that motor unit synchronization does not change during light-load training. Thus, it is likely that force steadiness in older adults improves by reducing motor unit firing variability rather than by changing motor unit synchronization.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Analysis of Variance
  • Electromyography
  • Female
  • Fingers / physiology*
  • Hand Strength
  • Humans
  • Male
  • Motor Activity / physiology*
  • Muscle, Skeletal / physiology*
  • Resistance Training*
  • Task Performance and Analysis
  • Thumb / physiology