We determined total Purkinje cell (PC) numbers in cerebella of wild-type (+/+) and heterozygous (rl/+) reeler mice of either sex during early postnatal development; in parallel, we quantified levels of neuroactive steroids in the cerebellum with mass spectrometry. We also quantified reelin mRNA and protein expression with RT-PCR and Western blotting. PC numbers are selectively reduced at postnatal day 15 (P15) in rl/+ males in comparison to +/+ males, +/+ females, and rl/+ females. Administration of 17beta-estradiol (17beta-E) into the cisterna magna at P5 increases PC numbers in rl/+ males, but not in the other groups; conversely, estrogen antagonists 4-OH-tamoxifen or ICI 182,780 reduce PC numbers in +/+ and rl/+ females, but have no effect in males. Testosterone (T) levels at P5 are much higher in males than in females, reflecting the perinatal testosterone surge in males. In addition, rl/+ male cerebella at P5 show a peculiar hormonal profile in comparison with the other groups, consisting of increased levels of T and 17beta-E, and decreased levels of dihydrotestosterone. RT-PCR analysis indicated that heterozygosity leads to a 50% reduction of reelin mRNA in the cerebellum in both sexes, as expected, and that 17beta-E upregulates reelin mRNA, particularly in rl/+ males; reelin mRNA upregulation is associated with an increase of all major reelin isoforms. These effects may represent a novel model of how reelin deficiency interacts with variable perinatal levels of neuroactive steroids, leading to gender-dependent differences in genetic vulnerability.