Neural stem cells (NSCs) are tissue-specific stem cells with self-renewal potential in brain, and are committed cells of the central nervous system. Recently, some reports have suggested the possibility of the NSCs to differentiate into non-CNS mesodermal derivatives, such as blood cells and skeletal muscle cells. Here we isolated NSCs as neurospheres from a neonatal mouse brain using serum replacement medium, and demonstrated that the stem cell population expressing pluripotent-related genes such as Oct-4, Sox-2, and Nanog possess multiple differentiation potentials to ectodermal, mesodermal, and endodermal lineages, that is, some neural cells, beating cardiomyocytes, adipocytes, and insulin-producing cells. The results of the present study partly provide further evidence for multiple differentiation properties of NSCs and suggest common characteristics between NSCs and other pluripotent stem cells.