As a consequence of human activities, large amounts of cadmium, lead and zinc are released in the environment, often simultaneously. The aim of this study was to investigate under experimental conditions the DNA damage induced in Algerian mice (Mus spretus) exposed to cadmium (Cd), lead (Pb) and zinc (Zn) separately, or in selected combinations. Three cytogenetic end points were considered: the frequencies of micronucleated cells (MN) and sister chromatid exchange (SCE) in the bone marrow and the frequency of sperm abnormalities. Mice were treated by intraperitoneal (i.p.) injections with 5 or 10 doses of aqueous solutions of cadmium acetate, lead acetate and zinc acetate in concentrations corresponding to 1/10 of the LD50, respectively, 21.5, 0.46 and 1.5 mg/kg bw. The control groups were injected in the same way with distilled water. With only one exception (Cd + Zn group treated with 5 doses), the results show a significant increase of MN in all groups for both treatments (5 and 10 doses). Similarly, the results concerning the SCE revealed a statistically significant increase in all treated animals, with the exception of the Zn group treated with 5 doses. The number of sperm abnormalities was significantly higher in animals treated with 5 doses, except in the group Pb + Zn. In animals treated with 10 doses the number of sperm abnormalities was always statistically higher compared with controls. This study indicates that cadmium, lead and zinc can induce MN, SCEs and sperm abnormalities in Algerian mice and that the clastogenic potential is dependent on the time of exposure and the interaction between the three elements, confirming the environmental damage that may result from the simultaneous action of several metals. Most relevant is the toxic potential for Zn, related with the dose, which may compromise its protective effect against other metal contaminations, such as cadmium.