A truncated CFTR protein rescues endogenous DeltaF508-CFTR and corrects chloride transport in mice

FASEB J. 2009 Nov;23(11):3743-51. doi: 10.1096/fj.08-127878. Epub 2009 Jul 20.

Abstract

Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) protein. The DeltaF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of endogenous DeltaF508-CFTR in vivo. cDNA encoding CFTR fragments were delivered to human airway epithelial cells and mice harboring endogenous DeltaF508-CFTR. Delivery of small CFTR fragments, which do not act as chloride channels by themselves, rescue DeltaF508-CFTR. Therefore, we can speculate that the presence of the CFTR fragment, which does not harbor a mutation, might facilitate intermolecular interactions. The rescue of CFTR was evident by the restoration of chloride transport in human CFBE41o- bronchial epithelial cells expressing DeltaF508-CFTR in vitro. More important, nasal administration of an adenovirus expressing a complementary CFTR fragment restored some degree of CFTR activity in the nasal airways of DeltaF508 homozygous mice in vivo. These findings identify complementary protein fragments as a viable in vivo approach for correcting disease-causing misfolding of plasma membrane proteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Chlorides / metabolism*
  • Cystic Fibrosis / genetics
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism*
  • Epithelial Cells / metabolism
  • Humans
  • Ion Transport / drug effects*
  • Ion Transport / genetics
  • Mice
  • Peptide Fragments / pharmacology*

Substances

  • Chlorides
  • Peptide Fragments
  • cystic fibrosis transmembrane conductance regulator delta F508
  • Cystic Fibrosis Transmembrane Conductance Regulator