Background: Semitranslucency, defined as a smooth, jelly-like area with varied, near-skin-tone color, can indicate a diagnosis of basal cell carcinoma (BCC) with high specificity. This study sought to analyze potential areas of semitranslucency with histogram-derived texture and color measures to discriminate BCC from non-semitranslucent areas in non-BCC skin lesions.
Methods: For 210 dermoscopy images, the areas of semitranslucency in 42 BCCs and comparable areas of smoothness and color in 168 non-BCCs were selected manually. Six color measures and six texture measures were applied to the semitranslucent areas of the BCC and the comparable areas in the non-BCC images.
Results: Receiver operating characteristic (ROC) curve analysis showed that the texture measures alone provided greater separation of BCC from non-BCC than the color measures alone. Statistical analysis showed that the four most important measures of semitranslucency are three histogram measures: contrast, smoothness, and entropy, and one color measure: blue chromaticity. Smoothness is the single most important measure. The combined 12 measures achieved a diagnostic accuracy of 95.05% based on area under the ROC curve.
Conclusion: Texture and color analysis measures, especially smoothness, may afford automatic detection of BCC images with semitranslucency.