Intra-Golgi retrograde transport is assumed to maintain Golgi function by recycling Golgi-resident proteins to younger cisternae in the progression of entire Golgi stack from cis to trans. GS28 (Golgi SNARE of 28 kDa, also known as GOS28) is a Golgi-localized SNARE protein and has been implicated in intra-Golgi retrograde transport. However, the in vivo functions of GS28, and consequently, the roles of the intra-Golgi retrograde transport in animal development are largely unknown. In this study, we generated deletion mutants of Caenorhabditis elegans GS28 and performed a synthetic lethal RNAi screen using GS28 mutants. We found that another Golgi-localized SNARE, Ykt6, functions cooperatively with GS28 in embryonic development. During post-embryonic development, GS28 mutants exhibited reduced seam cell numbers and a missing ray phenotype under Ykt6 knockdown conditions, suggesting that cell proliferation and/or differentiation of stem cell-like seam cells are impaired in GS28- and Ykt6-depleted worms. We also demonstrated that GS28 and Ykt6 act redundantly for the proper expression of Golgi-resident proteins in adult intestinal cells. This study reveals the in vivo importance of the Golgi-localized SNAREs GS28 and Ykt6.