We tested whether soluble viscoelastic drag-reducing polymers (DRPs), which modify blood flow in the macro- and microcirculation, affect host response to implanted biomaterials and control biodegradation and tissue ingrowth processes. Porous poly(L-lactate) (PLLA) implants, which are naturally hydrolyzed by foreign body giant cells, were used to evaluate differences in host response. Intravenous DRPs, high-molecular weight poly(ethylene oxide) (PEO) or poly(mannose) (PMNN), were given biweekly at 0.3-0.4 nM in saline (equivalent volumes of saline in controls) to rats with subcutaneous PLLA implants. After 7 weeks, there was no difference in weight gain or behavior between control and DRP-injected groups. Implanted PLLA scaffolds in controls were almost totally degraded and replaced by giant cell granulomas. On the contrary, PEO- or PMNN-treated animals retained a significant part of the implanted scaffold (p < 0.0001 vs. controls). The foreign body reaction was markedly decreased, and there was an increase in well-oriented collagen deposition within the implanted scaffold area in the animals treated with DRPs. The DRP-mediated effects observed in this study potentially reflect alteration in inflammatory events in response to implanted bioengineered materials, and, thus, warrant further investigation.