Interval-censored longitudinal data taken from a Norwegian study of individuals with Parkinson's disease are investigated with respect to the onset of dementia. Of interest are risk factors for dementia and the subdivision of total life expectancy (LE) into LE with and without dementia. To estimate LEs using extrapolation, a parametric continuous-time 3-state illness-death Markov model is presented in a Bayesian framework. The framework is well suited to allow for heterogeneity via random effects and to investigate additional computation using model parameters. In the estimation of LEs, microsimulation is used to take into account random effects. Intensities of moving between the states are allowed to change in a piecewise-constant fashion by linking them to age as a time-dependent covariate. Possible right censoring at the end of the follow-up can be incorporated. The model is applicable in many situations where individuals are followed over a long time period. In describing how a disease develops over time, the model can help to predict future need for health care.