Central and peripheral chemoreceptors evoke distinct responses in simultaneously recorded neurons of the raphé-pontomedullary respiratory network

Philos Trans R Soc Lond B Biol Sci. 2009 Sep 12;364(1529):2501-16. doi: 10.1098/rstb.2009.0075.

Abstract

The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO(2)-saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Carbon Dioxide
  • Cats
  • Chemoreceptor Cells / physiology*
  • Medulla Oblongata / physiology*
  • Microelectrodes
  • Neural Pathways / physiology
  • Neurons / metabolism
  • Phrenic Nerve / physiology*
  • Pons / physiology*
  • Raphe Nuclei / physiology*
  • Respiratory Mechanics / physiology*

Substances

  • Carbon Dioxide