Influenza C virus uses 9-O-acetyl-N-acetylaneuraminic acid (9-O-acetyl-Neu5Ac) as a receptor determinant for attachment to cells. The virus contains an acetylesterase which releases acetyl residues from position C-9 of sialic acid thereby inactivating the receptors. A synthetic sialic acid analogue, 9-N-acetyl-Neu5Ac, was attached to cell surface glycoconjugates by purified sialyltransferase and analyzed for its ability to substitute the 9-O-acetylated sialic acid. Erythrocytes which have been modified to contain either 9-O-acetyl-Neu5Ac or 9-N-acetyl-Neu5Ac were agglutinated by influenza C virus to the same titer. However, in contrast to the 9-O-acetyl group the 9-N-acetyl residue is resistant to cleavage by the viral acetylesterase. This characteristic property (recognition as a receptor determinant by influenza C virus, but resistance against the action of the receptor-destroying enzyme) makes this synthetic analogue a valuable tool to analyze the role of the receptor-destroying enzyme for an influenza C virus infection.