We address the problem of how the survival of cooperation in a social system depends on the motion of the individuals. Specifically, we study a model in which prisoner's dilemma players are allowed to move in a two-dimensional plane. Our results show that cooperation can survive in such a system provided that both the temptation to defect and the velocity at which agents move are not too high. Moreover, we show that when these conditions are fulfilled, the only asymptotic state of the system is that in which all players are cooperators. Our results might have implications for the design of cooperative strategies in motion coordination and other applications including wireless networks.