Resonant Raman data on ferromagnetic GaMnAs reveal the existence of a new kind of defect: insulating nanoislands consisting of substitutional MnGa acceptors surrounded by interstitial MnI donors. As indicated by the observation of a sharp 1S3/2-->2S3/2 Raman transition at approximately 703 cm(-1), the acceptor-bound holes inside the islands are isolated from the metallic surroundings. Instead, Mn-bound excitons do couple to the ferromagnetic environment, as shown by the presence of associated Raman magnon side bands. This leads to an estimate of 5-10 nm for the nanoisland radius. The islands disappear after annealing due to the removal of the MnI ions.