We show how time-resolved coherent anti-Stokes Raman scattering can be used to identify interfering pathways in the relaxation dynamics of autoionizing transients in many-electron systems, on femto- and attosecond time scales. For coherent population of many states, autoionizing wave-packet dynamics is resolved. We identify bound-bound, continuum-bound, and bound-continuum-bound contributions and show that they leave distinct features in the total coherent anti-Stokes Raman scattering signal.