Nitric oxide (NO), generated by inducible NO synthase (iNOS) in bystander human CD8 T cells, augments the accumulation of allogeneically activated human CD8 T cells in vitro and in vivo. Here, we report that iNOS-derived NO does not affect T-cell proliferation but rather inhibits cell death of activated human CD8 T cells after activation by allogeneic endothelial cells in culture. Exogenous NO did not affect activation-induced cell death of human CD8 T cells but specifically reduced death of activated T cells due to cytokine deprivation. NO-mediated inhibition of T-cell death did not involve cGMP signaling, and NO did not affect the expression of Bcl-2-related proteins known to regulate cytokine deprivation-induced cell death. However, NO inhibited the activity of caspases activated as a consequence of cytokine deprivation in activated T cells. This protective effect correlated with S-nitrosylation of caspases and was phenocopied by z-VAD.fmk and z-LEHD.fmk, pharmacological inhibitors of caspases. In summary, our findings indicate that NO augments the accumulation of activated human T cells principally by inhibiting cytokine deprivation-induced cell death through S-nitrosylation of caspases.