Endometriosis, defined as the presence of endometrial glands and stroma at extra-uterine sites, is a gynecological condition that affects women of reproductive age. Consistent with its uterine origins, endometriotic lesions and resulting symptoms are hormonally responsive. To investigate Progesterone Receptor (PR)-based therapies, we measured physiological endpoints and gene expression in rat models of uterine cell estrogenic activity. Estrogen-induced ELT-3 rat leiomyoma cell proliferation was significantly inhibited by progesterone (P4), while the antiprogestin RU486 or the Selective PR Modulator (SPRM) asoprisnil, did not block proliferation. Stromal cell-derived factor-1 (SDF-1/Cxcl12) gene expression was induced by estrogen, and was repressed by the Selective Estrogen Receptor Modulators (SERMs), the antiestrogen ICI 182,780, and P4, but not by RU486 or the ERbeta-selective ligand ERB-041. In ELT-3 cells, asoprisnil demonstrated partial PR agonism on SDF-1 gene repression. Magnetic Resonance Imaging was used to monitor development of ectopic cysts in a rat surgical model of endometriosis. SERMs and P4 significantly decreased cyst volumes comparably by approximately 60%. However, ERB-041 and asoprisnil had no effect on cyst volume, and RU486 increased cyst volume by 20%. SDF-1 expression was modestly, but significantly, increased in the cyst compared to eutopic uterus, and P4 and raloxifene could repress the expression. We showed that SDF-1 was similarly regulated in human cells. These data suggest that transcriptional regulation of SDF-1 is a surrogate marker of estrogenic activities via ERalpha in rat uterine cells, and that SDF-1 repression by PR agonists can predict the ability to oppose the actions of estrogen in vivo.