Prostaglandin E(2) (PGE(2)) plays a crucial role in the apparent link between tumor growth and chronic inflammation. Cyclooxygenase (COX)-2 and microsomal PGE(2) synthase-1, which are overexpressed in many cancers, are functionally coupled and thus produce massive PGE(2) in various tumors. Curcumin, a polyphenolic beta-diketone from tumeric with anti-carcinogenic and anti-inflammatory activities, was shown to suppress PGE(2) formation and to block the expression of COX-2 and of microsomal PGE(2) synthase-1. Here, we identified microsomal PGE(2) synthase-1 as a molecular target of curcumin and we show that inhibition of microsomal PGE(2) synthase-1 activity is the predominant mechanism of curcumin to suppress PGE(2) biosynthesis. Curcumin reversibly inhibited the conversion of PGH(2) to PGE(2) by microsomal PGE(2) synthase-1 in microsomes of interleukin-1beta-stimulated A549 lung carcinoma cells with an IC(50) of 0.2 to 0.3 micromol/L. Closely related polyphenols (e.g., resveratrol, coniferyl alcohol, eugenol, rosmarinic acid) failed in this respect, and isolated ovine COX-1 and human recombinant COX-2 were not inhibited by curcumin up to 30 micromol/L. In lipopolysaccharide-stimulated human whole blood, curcumin inhibited COX-2-derived PGE(2) formation from endogenous or from exogenous arachidonic acid, whereas the concomitant formation of COX-2-mediated 6-keto PGF(1)alpha and COX-1-derived 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid was suppressed only at significant higher concentrations. Based on the key function of PGE(2) in inflammation and carcinogenesis, inhibition of microsomal PGE(2) synthase-1 by curcumin provides a molecular basis for its anticarcinogenic and anti-inflammatory activities.