Background: A variety of near-infrared spectroscopy devices can be used to make noninvasive measurements of cerebral tissue oxygen saturation (ScO2). The ScO2 measured by the NIRO 300 spectrometer (Hamamatsu Photonics, Japan) is called the cerebral tissue oxygenation index (TOI) and is an assessment of the balance between cerebral oxygen delivery and utilization. We designed this study to investigate the effect of systemic and intracranial physiological changes on TOI.
Methods: Fifteen healthy volunteers were studied during isocapneic hyperoxia and hypoxemia, and normoxic hypercapnea and hypocapnea. Absolute cerebral TOI and changes in oxy- and deoxyhemoglobin concentrations were measured using a NIRO 300 spectrometer. Changes in arterial oxygen saturation (SaO2), ETCO2, heart rate, mean arterial blood pressure (MBP), and middle cerebral artery blood flow velocity (Vmca) were also measured during these physiological challenges. Changes in cerebral blood volume (CBV) were subsequently calculated from changes in total cerebral hemoglobin concentration.
Results: Baseline TOI was 67.3% with an interquartile range (IQR) of 65.2%-71.9%. Hypoxemia was associated with a median decrease in TOI of 7.1% (IQR -9.1% to -5.4%) from baseline (P < 0.0001) and hyperoxia with a median increase of 2.3% (IQR 2.0%-2.5%) (P < 0.0001). Hypocapnea caused a reduction in TOI of 2.1% (IQR -3.3% to -1.3%) from baseline (P < 0.0001) and hypercapnea an increase of 2.6% (IQR 1.4%-3.7%) (P < 0.0001). Changes in SaO2 (P < 0.0001), ETCO2 (P < 0.0001), CBV (P = 0.0003), and MBP (P = 0.03) were significant variables affecting TOI. Changes in Vmca (P = 0.7) and heart rate (P = 0.2) were not significant factors.
Conclusion: TOI is an easy-to-monitor variable that provides real-time, multisite, and noninvasive assessment of the balance between cerebral oxygen delivery and utilization. However, TOI is a complex variable that is affected by SaO2 and ETCO2, and, to a lesser extent, by MBP and CBV. Clinicians need to be aware of the systemic and cerebral physiological changes that can affect TOI to interpret changes in this variable during clinical monitoring.