Purpose: Endothelial-like vascular progenitor cells (VPCs) are associated with the repair of ischemic tissue injury in several clinical settings. Because the endothelium is a principal target of radiation injury, VPCs may be important in limiting toxicity associated with radiotherapy (RT) in patients with cancer.
Methods and materials: We studied 30 patients undergoing RT for skin cancer (n = 5), head-and-neck cancer (n = 15), and prostate cancer (n = 10) prospectively, representing a wide range of irradiated mucosal volumes. Vascular progenitor cell levels were enumerated from peripheral blood at baseline, midway through RT, at the end of treatment, and 4 weeks after radiation. Acute toxicity was graded at each time point by use of the National Cancer Institute's Common Toxicity Criteria, version 3.0.
Results: Significant increases in the proportion of CD34(+)/CD133(+) VPCs were observed after completion of RT, from 0.012% at baseline to 0.048% (p = 0.029), and the increase in this subpopulation was most marked in patients with Grade 2 peak toxicity or greater after RT (p = 0.034). Similarly, CD34(+)/vascular endothelial growth factor receptor 2-positive VPCs were increased after the completion of radiation therapy in comparison to baseline (from 0.014% to 0.027%, p = 0.043), and there was a trend toward greater mobilization in patients with more significant toxicity (p = 0.08). The mobilization of CD34(+) hematopoietic stem cells did not increase after treatment (p = 0.58), and there was no relationship with toxicity.
Conclusions: We suggest that VPCs may play an important role in reducing radiation-induced tissue damage. Interventions that increase baseline VPC levels or enhance their mobilization and recruitment in response to RT may prove useful in facilitating more rapid and complete tissue healing.