The outer core (OC) region of Yersinia enterocolitica serotype O:3 lipopolysaccharide is a hexasaccharide essential for the integrity of the outer membrane. It is involved in resistance against cationic antimicrobial peptides and plays a role in virulence during early phases of infection. We show here that the proximal residue of the OC hexasaccharide is a rarely encountered 4-keto-hexosamine, 2-acetamido-2,6-dideoxy-D-xylo-hex-4-ulopyranose (Sugp) and that WbcP is a UDP-GlcNAc-4,6-dehydratase enzyme responsible for the biosynthesis of the nucleotide-activated form of this rare sugar converting UDP-2-acetamido-2-deoxy-D-glucopyranose (UDP-D-GlcpNAc) to UDP-2-acetamido-2,6-dideoxy-D-xylo-hex-4-ulopyranose (UDP- Sugp). In an aqueous environment, the 4-keto group of this sugar was present in the 4-dihydroxy form, due to hydration. Furthermore, evidence is provided that the axial 4-hydroxy group of this dihydroxy function was crucial for the biological role of the OC, that is, in the bacteriophage and enterocoliticin receptor structure and in the epitope of a monoclonal antibody.