Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory

BMC Neurosci. 2009 Aug 21:10:101. doi: 10.1186/1471-2202-10-101.

Abstract

Background: Although a large body of knowledge about both brain structure and function has been gathered over the last decades, we still have a poor understanding of their exact relationship. Graph theory provides a method to study the relation between network structure and function, and its application to neuroscientific data is an emerging research field. We investigated topological changes in large-scale functional brain networks in patients with Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) by means of graph theoretical analysis of resting-state EEG recordings. EEGs of 20 patients with mild to moderate AD, 15 FTLD patients, and 23 non-demented individuals were recorded in an eyes-closed resting-state. The synchronization likelihood (SL), a measure of functional connectivity, was calculated for each sensor pair in 0.5-4 Hz, 4-8 Hz, 8-10 Hz, 10-13 Hz, 13-30 Hz and 30-45 Hz frequency bands. The resulting connectivity matrices were converted to unweighted graphs, whose structure was characterized with several measures: mean clustering coefficient (local connectivity), characteristic path length (global connectivity) and degree correlation (network 'assortativity'). All results were normalized for network size and compared with random control networks.

Results: In AD, the clustering coefficient decreased in the lower alpha and beta bands (p < 0.001), and the characteristic path length decreased in the lower alpha and gamma bands (p < 0.05) compared to controls. In FTLD no significant differences with controls were found in these measures. The degree correlation decreased in both alpha bands in AD compared to controls (p < 0.05), but increased in the FTLD lower alpha band compared with controls (p < 0.01).

Conclusion: With decreasing local and global connectivity parameters, the large-scale functional brain network organization in AD deviates from the optimal 'small-world' network structure towards a more 'random' type. This is associated with less efficient information exchange between brain areas, supporting the disconnection hypothesis of AD. Surprisingly, FTLD patients show changes in the opposite direction, towards a (perhaps excessively) more 'ordered' network structure, possibly reflecting a different underlying pathophysiological process.

MeSH terms

  • Adult
  • Aged
  • Alzheimer Disease / physiopathology*
  • Brain / physiopathology
  • Dementia / physiopathology*
  • Electroencephalography
  • Female
  • Humans
  • Male
  • Middle Aged
  • Models, Neurological*
  • Nerve Net / physiopathology*
  • Nonlinear Dynamics
  • Signal Processing, Computer-Assisted*