It has been demonstrated that naturally occurring coumarins have strong biological activity against many cancer cell lines. In this study, we assessed the cytotoxicity induced by the naturally isolated coumarin A/AA in different cancer cell lines (HeLa, Calo, SW480, and SW620) and in normal peripheral-blood mononuclear cells (PBMCs). Cytotoxicity was evaluated using the MTT assay. The results demonstrate that coumarin A/AA was cytotoxic in the four cancer cell lines tested and importantly was significantly less toxic in PBMCs isolated from healthy donors. The most sensitive cancer cell line to coumarin A/AA treatment was Hela. Thus, the programmed cell death (PCD) mechanism induced by this coumarin was further studied in this cell line. DNA fragmentation, histomorphology, cell cycle phases, and subcellular distribution of PCD proteins were assessed. The results demonstrated that DNA fragmentation, but not significant cell cycle disruptions, was part of the PCD activated by coumarin A/AA. Interestingly, it was found that apoptosis-inducing factor (AIF), a proapoptotic protein of the mitochondrial intermembrane space, was released to the cytoplasm in treated cells as detected by the western blot analysis in subcellular fractions. Nevertheless, the active form of caspase-3 was not detected. The overall results indicate that coumarin A/AA induces a caspase-independent apoptotic-like cell death program in HeLa cells, mediated by the early release of AIF and suggest that this compound may be helpful in clinical oncology.
2009 Wiley Periodicals, Inc.