Consumption of green tea extract results in osteopenia in growing male mice

J Nutr. 2009 Oct;139(10):1914-9. doi: 10.3945/jn.109.107201. Epub 2009 Aug 26.

Abstract

Consumption of green tea may reduce body weight gain. Although many disorders are related to obesity, bone mass is positively correlated with body mass. Therefore, our purpose in this study was to determine the effects of green tea extract (GTE) on bone mass and architecture in rapidly growing lean [C57BL/6 wild type (WT)] and genetically obese, leptin-deficient (ob/ob) male mice. Five-week-old lean and ob/ob mice were assigned to diets containing GTE at 0, 1, or 2% for 6 wk. Femoral and lumbar vertebral bone volume and architecture were evaluated by micro-computed tomography (muCT). Following muCT analysis, femora were ashed to determine bone mineral content and density. Compared with WT mice, ob/ob mice had shorter femora (P < 0.001), lower femoral bone volume (P < 0.001), and lower femoral bone mineral content (P < 0.001), but higher cancellous bone volume in lumbar vertebrae (P < 001). Neither genotype nor treatment affected femoral bone mineral density, indicating normal mineralization. GTE consumption resulted in lower femur length, volume, mineral content, cortical volume, and cortical thickness (P < 0.001), as well as lower cancellous bone volume/tissue volume (P < 0.008) and trabecular thickness (P < 0.004) in lumbar vertebrae. The results indicate that leptin is not essential for the reduced gains in body weight and bone mass due to GTE in growing mice and suggest that consumption of large quantities of green tea may reduce the rate of bone accumulation during growth.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bone Development / drug effects*
  • Bone Diseases, Metabolic / chemically induced*
  • Camellia sinensis / chemistry*
  • Dose-Response Relationship, Drug
  • Femur / drug effects
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Obese
  • Plant Extracts / chemistry*
  • Plant Extracts / pharmacology*
  • Spine / drug effects

Substances

  • Plant Extracts