NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes

Cardiovasc Res. 2010 Feb 1;85(3):473-83. doi: 10.1093/cvr/cvp305. Epub 2009 Sep 3.

Abstract

Aims: Inflammatory molecules and their transcription factor, nuclear factor kappa-B (NF-kappaB), are thought to play important roles in diabetes-induced cardiac dysfunction. Here, we investigated the effects of pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, in diabetic mice.

Methods and results: Obese db/db mice and heterozygous lean mice (n = 8) were allowed free access to drinking water (control) or water containing PDTC (100 mg/kg) for 20 weeks. Left ventricular (LV) function was measured using echocardiography at baseline and at study end. Mice were sacrificed and LV removed for gene expression, biochemical, immunofluorescence, and mitochondrial assays. LV and mitochondrial reactive oxygen species (ROS), superoxide and peroxynitrite were measured using electron spin resonance spectroscopy. Enhanced NF-kappaB activity in db/db mice was associated with increased oxidative stress as demonstrated by increased ROS, superoxide, and peroxynitrite production, and increased NF-kappaB, gp91phox, and Nox1 expression; PDTC ameliorated these effects. Mitochondrial free radical production and structural damage were higher in the db/db group than in the control, db/db PDTC, and PDTC-treated heterozygous animal groups.

Conclusion: This study demonstrates that NF-kappaB blockade with PDTC mitigates oxidative stress and improves mitochondrial structural integrity directly, through down-regulation of increased oxygen-free radicals, thereby increasing ATP synthesis and thus restoring cardiac function in type II diabetes.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Body Weight
  • Diabetes Mellitus, Type 2 / physiopathology*
  • Echocardiography
  • Electron Transport Complex III / metabolism
  • Glutathione / analysis
  • Heart / physiopathology*
  • Interleukin-6 / blood
  • Male
  • Mice
  • Mitochondria / physiology*
  • NF-kappa B / analysis
  • NF-kappa B / antagonists & inhibitors
  • NF-kappa B / physiology*
  • Organ Size
  • Oxidative Stress*
  • Reactive Oxygen Species / metabolism
  • Superoxides / metabolism
  • Tumor Necrosis Factor-alpha / blood

Substances

  • Interleukin-6
  • NF-kappa B
  • Reactive Oxygen Species
  • Tumor Necrosis Factor-alpha
  • Superoxides
  • Electron Transport Complex III
  • Glutathione