A peripheral mechanism preserves self-tolerance to a secreted protein in transgenic mice

J Immunol. 1990 Sep 1;145(5):1376-81.

Abstract

We have examined mechanisms of tolerance to circulating self-proteins in mice that are transgenic for human insulin. Normal, nontransgenic mice develop serum antibody responses when injected with human insulin in CFA; syngeneic transgenic mice do not. B cell responsiveness was assessed by immunizing with human insulin coupled to a T-independent Ag, Brucella abortus. No differences were found in the numbers of insulin-specific splenic plaque-forming cells between transgenic and nontransgenic mice suggesting that insulin-specific B cells are not tolerant in transgenic mice. Similarly, APC from transgenic and nontransgenic mice display no differences in their ability to process and present human insulin to human insulin-specific T cells in vitro. However, marked differences were detected between transgenic and nontransgenic T cells. Lymph node T cells from transgenic mice primed with human insulin provided no detectable helper activity for secondary antibody responses to human insulin whereas, lymph node T cells from nontransgenic mice did. Nevertheless, lymph node T cells from transgenic mice developed significant proliferative responses to human insulin. Lymph node T cells obtained from transgenic and nontransgenic mice were fused to BW5147 and human insulin-specific T cell hybridomas were generated. The fact that human insulin-specific T cell hybridomas were obtained from the transgenic mice suggests that these T cells were not clonally deleted. In addition, APC from transgenic mice did not stimulate human insulin-specific hybridomas from normal mice in the absence of exogenous insulin. We suggest that T cells specific for human insulin are not deleted in the thymus of transgenic mice because APC in the thymus do not bear the requisite levels of endogenous human insulin/Ia complexes. Therefore, we conclude that tolerance in the transgenic mice is preserved by peripheral mechanisms.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antigen-Presenting Cells / immunology
  • Antigens, Differentiation, T-Lymphocyte / analysis
  • B-Lymphocytes / immunology
  • Blotting, Southern
  • CD3 Complex
  • CD4-Positive T-Lymphocytes / immunology
  • CD8 Antigens
  • Histocompatibility Antigens Class II / immunology
  • Hybridomas
  • Immune Tolerance*
  • Insulin / genetics
  • Insulin / immunology*
  • Lymphocyte Cooperation
  • Mice
  • Mice, Transgenic / immunology*
  • Receptors, Antigen, T-Cell / analysis
  • T-Lymphocytes, Helper-Inducer / immunology

Substances

  • Antigens, Differentiation, T-Lymphocyte
  • CD3 Complex
  • CD8 Antigens
  • Histocompatibility Antigens Class II
  • Insulin
  • Receptors, Antigen, T-Cell