To better understand the effects of pubertal maturation on the contractile properties of skeletal muscle in vivo, the present study investigated whether there are any differences in the specific tension of the quadriceps muscle in 20 adults and 20 prepubertal children of both sexes. Specific tension was calculated as the ratio between the quadriceps tendon force and the sum of the physiological cross-sectional area (PCSA) multiplied by the cosine of the angle of pennation of each head within the quadriceps muscle. The maximal quadriceps tendon force was calculated from the knee extension maximal voluntary contraction (MVC) by accounting for EMG-based estimates of antagonist co-activation, incomplete quadriceps activation using the interpolation twitch technique and magnetic resonance imaging (MRI)-based measurements of the patellar tendon moment arm. The PCSA was calculated as the muscle volume, measured from MRI scans, divided by optimal fascicle length, measured from ultrasound images during MVC at the estimated angle of peak quadriceps muscle force. It was found that the quadriceps tendon force and PCSA of men (11.4 kN, 214 cm(2)) were significantly greater than those of the women (8.7 kN, 152 cm(2); P < 0.01). Both adult groups had greater values than the children (P < 0.01) but there were no differences between boys (5.2 kN, 99 cm(2)) and girls (6.1 kN, 102 cm(2)). Agonist activation was greater in men and women than in girls (P < 0.05), and antagonist activation was greater in men than in boys (P < 0.05). Moment arm length was greater in men than in boys or girls and greater in women than in boys (P < 0.05). The angle of pennation did not differ between the groups in any of the quadriceps heads. The specific tension was similar (P > 0.05) between groups: men, 55 +/- 11 N cm(-2); women, 57.3 +/- 13 N cm(-2); boys, 54 +/- 14 N cm(-2); and girls, 59.8 +/- 15 N cm(-2). These findings indicate that the increased muscle strength with maturation is not due to an increase in the specific tension of muscle; instead, it can be attributed to increases in muscle size, moment arm length and voluntary activation level.