Aims: Bronchodilator response tests measure the effect of beta(2)-agonists, the most commonly used short-acting reliever drugs for asthma. We sought to relate candidate gene SNP data with bronchodilator response and measure the predictive accuracy of a model constructed with genetic variants.
Materials & methods: Bayesian networks, multivariate models that are able to account for simultaneous associations and interactions among variables, were used to create a predictive model of bronchodilator response using candidate gene SNP data from 308 Childhood Asthma Management Program Caucasian subjects.
Results: The model found that 15 SNPs in 15 genes predict bronchodilator response with fair accuracy, as established by a fivefold cross-validation area under the receiver-operating characteristic curve of 0.75 (standard error: 0.03).
Conclusion: Bayesian networks are an attractive approach to analyze large-scale pharmacogenetic SNP data because of their ability to automatically learn complex models that can be used for the prediction and discovery of novel biological hypotheses.