Colorectal cancer is the leading cause of cancer related deaths in the United States. Although it is preventable, thousands of lives are lost each year in the U.S. to colorectal cancer than to breast cancer and AIDS combined. In colon cancer, the formation and progression of precancerous lesions like aberrant crypt foci and polyps is associated with the up-regulation of cycloxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and hydroxy methyl glutaryl CoA reductase (HMG-CoA reductase). The current review will focus on the signaling pathway involving COX-2 and HMG-CoA reductase enzymes and their downstream effectors in signaling mechanism. Cancer cells need huge pools of both cholesterol and isoprenoids to sustain their unlimited growth potential. Cholesterol by modulating caveolae formation regulates several signaling molecules like AKT, IGFR, EGFR and Rho which are involved in cell growth and survival. Cholesterol is also essential for lipid body formation which serves as storage sites for COX-2, eicosanoids and caveolin-1. Experimental studies have identified important mechanisms showing that COX-2, caveolin-1, lipid bodies and prenylated proteins is involved in carcinogenesis. Therefore multi-target, multi-drug approach is the ideal choice for effective colon cancer chemoprevention. This review will give an overview of the two pathways, their signaling networks, and the interactions between the components of the two networks in the activation and regulation of cell signaling involving growth/survival and explain the rationale for colon cancer chemoprevention using COX-2 inhibitors and statins.