The question of how species diversity affects ecological stability has long interested ecologists and yet remains largely unresolved. Historically, attempts to answer this question have been hampered by the presence of multiple potentially confounding stability concepts, confusion over responses at different levels of ecological organization, discrepancy between theoretical predictions, and, particularly, the paucity of empirical studies. Here we used meta-analyses to synthesize results of empirical studies published primarily in the past 2 decades on the relationship between species diversity and temporal stability. We show that the overall effect of increasing diversity was positive for community-level temporal stability but neutral for population-level temporal stability. There were, however, striking differences in the diversity-stability relationship between single- and multitrophic systems, with diversity stabilizing both population and community dynamics in multitrophic but not single-trophic communities. These patterns were broadly equivalent across experimental and observational studies as well as across terrestrial and aquatic studies. We discuss possible mechanisms for population stability to increase with diversity in multitrophic systems and for diversity to influence community-level stability in general. Overall, our results indicate that diversity can affect temporal stability, but the effects may critically depend on trophic complexity.