MicroRNAs (miRNAs or miRs) are small noncoding RNAs capable of regulating gene expression at the translational level. Current evidence suggests that a significant portion of the human genome is regulated by microRNAs, and many reports have demonstrated that microRNA expression is deregulated in human cancer. The let-7 family of microRNAs, first discovered in Caenorhabditis elegans, is functionally conserved from worms to humans. The human let-7 family contains 13 members located on nine different chromosomes, and many human cancers have deregulated let-7 expression. A growing body of evidence suggests that restoration of let-7 expression may be a useful therapeutic option in cancers, where its expression has been lost. In this review, we discuss the role of let-7 in normal development and differentiation, and provide an overview of the relationship between deregulated let-7 expression and tumorigenesis. The regulation of let-7 expression, cancer-relevant let-7 targets, and the relationship between let-7 and drug sensitivity are highlighted.