Aim: To develop an intact soil-core microcosm method to study the survival and vertical dispersal of an experimental biocontrol agent (Trichoderma atroviride SC1) applied to the soil surface.
Methods and results: The soil for the microcosms was collected using iron pipes with perforations corresponding to different soil layers. The tool was inserted into the soil and gently removed with the soil core inside. Trichoderma atroviride SC1 was mixed with the top layer of soil in the pipe. The experiment was performed in 2006 and 2007, and data from the microcosms were compared with results obtained under field conditions in the locations in which, the microcosms were collected, in the same periods. The concentrations of T. atroviride SC1 in the soil were estimated immediately after treatment, and 1, 5, 9 and 18 weeks after treatment at both the soil surface and the above-mentioned depths. The development of T. atroviride SC1 populations in the microcosms during the 18 weeks of monitoring was similar to that observed under field conditions. The dispersal of conidia was affected by the application of water to the soil.
Conclusions: Results demonstrate that this microcosm prototype can be used to model the behaviour of T. atroviride SC1 in soil.
Significance and impact of the study: The intact soil-core microcosm is a reliable, easy-to-use, fast and cheap method that could also be used in studies of similar filamentous fungi to study their probable fate in the soil prior to their being introduced into the environment.