Objectives: To use high throughput techniques to analyze intestinal microbial ecology in premature neonates, who are highly susceptible to perturbations of the luminal environment associated with necrotizing enterocolitis (NEC) and late-onset sepsis.
Study design: With non-culture-based techniques, we evaluated intestinal microbiota shortly after birth and during hospitalization in 23 neonates born at 23 to 32 weeks gestational age. Microbiota compositions were compared in 6 preterm infants in whom NEC, signs of systemic inflammation, or both developed with matched control subjects by using 16S ribosomal RNA pyrosequencing.
Results: Microbial DNA was detected in meconium, suggesting an intrauterine origin. Differences in diversity were detected in infants whose mothers intended to breast feed (P = .03), babies born to mothers with chorioamnionitis (P = .06), and in babies born at <30 weeks gestation (P = .03). A 16S ribosomal RNA sequence analysis detected Citrobacter-like sequences only in cases with NEC (3 of 4) and an increased frequency of Enterococcus-like sequences in cases and Klebsiella in control subjects (P = .06). The overall microbiota profiles in cases with NEC were not distinguishable from that in control subjects.
Conclusions: Microbial DNA in meconium of premature infants suggests prenatal influences.