Cyclin D1 induction by benzo[a]pyrene-7,8-diol-9,10-epoxide via the phosphatidylinositol 3-kinase/Akt/MAPK- and p70s6k-dependent pathway promotes cell transformation and tumorigenesis

J Biol Chem. 2009 Nov 27;284(48):33311-9. doi: 10.1074/jbc.M109.046417. Epub 2009 Sep 29.

Abstract

Benzo[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE), the major metabolite of B[a]P, has been well recognized as one ubiquitous carcinogen, but the molecular mechanism involved in its carcinogenic effect remains obscure. In the present study, we found that bronchial epithelial cells (Beas-2B) and hepatocytes treated with B[a]PDE presented a significant increase of cyclin D1 expression. Moreover, Akt, p70(s6k), and MAPKs including JNK, Erks, and p38 were notably activated in B[a]PDE-treated Beas-2B cells, whereas NF-kappaB, NFAT, and Egr-1 were not. Our results demonstrated that JNK and Erks were required in B[a]PDE-induced cyclin D1 expression because the inhibition of JNK or Erks by a selective chemical inhibitor or dominant negative mutant robustly impaired the cyclin D1 induction by B[a]PDE. Furthermore, we found that overexpression of the dominant negative mutant of p85 (regulatory subunit of phosphatidylinositol 3-kinase) or Akt dramatically suppressed B[a]PDE-induced JNK and Erk activation as well as cyclin D1 expression, suggesting that cyclin D1 induction by B[a]PDE is via the phosphatidylinositol 3-kinase/Akt/MAPK-dependent pathway. In addition, we clarified that p70(s6k) is also involved in B[a]PDE-induced cyclin D1 expression because rampamycin pretreatment dramatically reduced cyclin D1 induction by B[a]PDE. More importantly, we demonstrated that up-regulated cyclin D1 by B[a]PDE plays a critical role in oncogenic transformation and tumorigenesis of Beas-2B cells. These results not only broaden our knowledge of the molecular mechanism of B[a]PDE carcinogenicity but also lead to the further study of chemoprevention of B[a]PDE-associated human cancers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide / pharmacology
  • Animals
  • Antibiotics, Antineoplastic / pharmacology
  • Blotting, Western
  • Cell Line
  • Cell Transformation, Neoplastic / drug effects
  • Cyclin D1 / genetics
  • Cyclin D1 / metabolism*
  • Epithelial Cells / cytology
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Gene Expression / drug effects
  • Hepatocytes / cytology
  • Hepatocytes / drug effects
  • Hepatocytes / metabolism
  • Humans
  • JNK Mitogen-Activated Protein Kinases / genetics
  • JNK Mitogen-Activated Protein Kinases / metabolism
  • Mice
  • Mice, Nude
  • Models, Biological
  • Mutation
  • Neoplasms, Experimental / genetics
  • Neoplasms, Experimental / metabolism
  • Neoplasms, Experimental / pathology
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA Interference
  • Reverse Transcriptase Polymerase Chain Reaction
  • Ribosomal Protein S6 Kinases, 70-kDa / genetics
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism*
  • Signal Transduction / drug effects
  • Sirolimus / pharmacology
  • p38 Mitogen-Activated Protein Kinases / genetics
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Antibiotics, Antineoplastic
  • Cyclin D1
  • 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases, 70-kDa
  • JNK Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Sirolimus