Plasticity of the chemoreceptor repertoire in Drosophila melanogaster

PLoS Genet. 2009 Oct;5(10):e1000681. doi: 10.1371/journal.pgen.1000681. Epub 2009 Oct 9.

Abstract

For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Chemoreceptor Cells / physiology*
  • Drosophila Proteins / biosynthesis
  • Drosophila Proteins / genetics*
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / genetics*
  • Drosophila melanogaster / metabolism
  • Female
  • Gene Expression Regulation, Developmental
  • Genes, Insect
  • Male
  • Oligonucleotide Array Sequence Analysis
  • Phenotype
  • Receptors, Cell Surface / genetics*
  • Receptors, Cell Surface / metabolism
  • Receptors, Odorant / biosynthesis
  • Receptors, Odorant / genetics*
  • Reproducibility of Results
  • Reproduction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Sex Differentiation / genetics
  • Sexual Behavior, Animal
  • Sexual Maturation

Substances

  • Drosophila Proteins
  • Receptors, Cell Surface
  • Receptors, Odorant
  • gustatory receptor, Drosophila
  • odorant-binding protein