Unlike other neurological conditions, the heterogeneous pathology linked to disorders of consciousness currently excludes a distinction between the vegetative and minimally conscious states based upon pathological presentation. The clinical assessment is therefore made on the basis of the patient's clinical history and exhibited behaviour. This creates a particular challenge for the clinician who has to decide whether a certain behaviour, which might be inconsistent or incomplete, reflects a conscious or an unconscious process. In an alarmingly high number of cases, identified during clinical audit, this decision process has been shown to be particularly fallible. The behavioural assessment is not only highly subjective, but also dependent upon the ability of the patient to move or speak; it is the only way someone can demonstrate they are aware. To address this problem we propose a multimodal approach, which integrates objective tools, such as electrophysiology and functional brain imaging, with traditional behavioural scales. Together this approach informs the clinical decision process and resolves many of the dilemmas faced by clinicians interpreting solely behavioural indices. This approach not only provides objective information regarding the integrity of residual cognitive function, but also removes the dependency on the patient to move or speak by using specially designed paradigms that do not require a motor output in order to reveal awareness of self or environment. To demonstrate this approach we describe the case of BW, who sustained a traumatic brain injury seven months prior to investigation. BW was admitted to a five-day assessment programme, which implemented our multimodal approach. On behavioural assessment BW demonstrated evidence of orientation and visual pursuit. However, he showed no response to written or verbal command, despite holding command cards and scanning text. Electrophysiology confirmed that he retained a preserved neural axis supporting vision and hearing, and suggested some evidence that he was able to create a basic memory trace. A hierarchical fMRI auditory paradigm suggested he was able to perceive sound and speech, but revealed no evidence of speech comprehension or ability to respond to command. This was corroborated in the visual modality using a hierarchical paradigm demonstrating that he was able to perceive motion, objects and faces, but retained no evidence of being able to respond to command. We briefly review work by other teams advocating the use of brain imaging and electrophysiology and discuss the steps that are now required in order to create an international standard for the assessment of persons with impaired consciousness after brain injury.