A Rh(I)-catalyzed cyclocarbonylation reaction of allenol esters has been examined and its synthetic viability established for the conversion of trisubstituted allenes to bicyclo[4.3.0] and -[5.3.0] skeletons possessing an alpha-acetoxy cyclopentadienone. Tetrasubstituted allenol acetates gave elimination products, providing examples of a cyclocarbonylation reaction between an alkyne and a latent cumulene or cumulene equivalent. Cleavage of the acetate affords a free hydroxyl group illustrating the utility of this method for accessing alpha-hydroxy carbonyls from allenol esters.