Sleep is a crucial biological process that is regulated through complex interactions between multiple brain regions and neuromodulators. As sleep disorders can have deleterious impacts on health and quality of life, a wide variety of pharmacotherapies have been developed to treat conditions of excessive wakefulness and excessive sleepiness. The neurotransmitter norepinephrine (NE), through its involvement in the ascending arousal system, impacts the efficacy of many wake- and sleep-promoting medications. Wake-promoting drugs such as amphetamine and modafinil increase extracellular levels of NE, enhancing transmission along the wake-promoting pathway. GABAergic sleep-promoting medications like benzodiazepines and benzodiazepine-like drugs that act more specifically on benzodiazepine receptors increase the activity of GABA, which inhibits NE transmission and the wake-promoting pathway. Melatonin and related compounds increase sleep by suppressing the activity of the neurons in the brain's circadian clock, and NE influences the synthesis of melatonin. Antihistamines block the wake-promoting effects of histamine, which shares reciprocal signaling with NE. Many antidepressants that affect the signaling of NE are also used for treatment of insomnia. Finally, adrenergic receptor antagonists that are used to treat cardiovascular disorders have considerable sedative effects. Therefore, NE, long known for its role in maintaining general arousal, is also a crucial player in sleep pharmacology. The purpose of this review is to consider the role of NE in the actions of wake- and sleep-promoting drugs within the framework of the brain arousal systems.
Copyright 2009 Elsevier Inc. All rights reserved.