The resistance of malignant cells to chemotherapy calls for the development of novel anti-cancer drugs. TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic cytokine, which selectively induces apoptosis in malignant cells. We derived two TRAIL-resistant HL-60 subclones, HL-60/P1 and HL-60/P2, from a TRAIL-sensitive HL-60 acute promyelocytic leukemia cell line. To identify therapeutically exploitable "weaknesses" of the TRAIL-resistant leukemia cells that could be used as molecular targets for their elimination, we performed proteomic (2-DE) analysis and compared both TRAIL-resistant subclones with the original TRAIL-sensitive HL-60 cells. We identified over 40 differentially expressed proteins. To significantly narrow the lists of candidate proteins, we excluded proteins that are known to be often differentially expressed, regardless of experiment type and tissue (the so-called "TOP15" proteins). Decreased expression of DNA replication and maintenance proteins MCM7 and RPA32 in HL-60/P1 cells, and the marked down-regulation of enzyme adenosine deaminase in HL-60/P2 cells, suggests increased sensitivity of these cells to DNA-interfering drugs, and adenosine and its homologues, respectively. In a series of in vitro assays, we confirmed the increased toxicity of etoposide and cisplatin to TRAIL resistant HL-60/P1 cells, and adenosine and vidarabine to HL-60/P2, compared with TRAIL-sensitive HL-60 cells.