Abnormal transforming growth factor-beta (TGF-beta) signaling is a critical contributor to the pathogenesis of various human diseases ranging from tissue fibrosis to tumor formation. Excessive TGF-beta signaling stimulates fibrotic responses. Recent research has focused in the main on the antiproliferative effects of TGF-beta in fibroblasts, and it is presently understood that TGF-beta-stimulated cyclooxygenase-2 (COX-2) induction in fibroblasts is essential for antifibroproliferative effects of TGF-beta. Both TGF-beta and COX-2 have been implicated in tumor growth, invasion, and metastasis, and therefore tumor-associated fibroblasts are a recent topic of interest. Here we report the identification of positive and negative regulatory factors of COX-2 expression induced by TGF-beta as determined using proteomic approaches. We show that TGF-beta coordinately up-regulates three factors, heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), nucleotide diphosphate kinase A (NDPK A), and nucleotide diphosphate kinase A (NDPK B). Functional pathway analysis showed that HNRPAB augments mRNA and protein levels of COX-2 and subsequent prostaglandin E(2) (PGE(2)) production by suppressing degradation of COX-2 mRNA. In contrast, NDPK A and NDPK B attenuated mRNA and protein levels of COX-2 by affecting TGF-beta-Smad2/3/4 signaling at the receptor level. Collectively, we report on a new regulatory pathway of TGF-beta in controlling expression of COX-2 in fibroblasts, which advances our understanding of pathophysiological mechanisms of TGF-beta.