Nasal carriage of Staphylococcus aureus contributes to an increased risk of developing an infection with the same bacterial strain. Genetic regulatory elements and toxin-expressing genes are virulence factors associated with the pathogenic potential of S. aureus. We undertook an extensive molecular characterization of methicillin-susceptible S. aureus (MSSA) carried by children. MSSA were recovered from the nostrils of children. The presence of Panton-Valentine leukocidin (PVL), exfoliatins A and B (exfoA and exfoB), and the toxic-shock staphylococcal toxin (TSST-1) and agr group typing were determined by quantitative PCR. A multiple-locus variable-number of tandem repeat analysis (MLVA) assay was also performed for genotyping. Five hundred and seventy-two strains of MSSA were analysed. Overall, 30% were positive for toxin-expressing genes: 29% contained one toxin and 1.6% two toxins. The most commonly detected toxin gene was tst, which was present in 145 (25%) strains. The TSST-1 gene was significantly associated with the agr group 3 (OR 56.8, 95% CI 32.0-100.8). MLVA analysis revealed a large diversity of genetic content and no clonal relationship was demonstrated among the analysed MSSA strains. Multilocus sequence typing confirmed this observation of diversity and identified ST45 as a frequent colonizer. This broad diversity in MSSA carriage strains suggests a limited selection pressure in our geographical area.
© 2010 The Authors. Journal Compilation © 2010 European Society of Clinical Microbiology and Infectious Diseases.