During ejaculation in the boar, sperm cohorts emitted in epididymal cauda fluid are sequentially exposed and resuspended in different mixtures of accessory sex gland secretion. This paper reviews the relevance of such unevenly composed fractions of seminal plasma (SP) in vivo on sperm transport and sperm function and how this knowledge could benefit boar semen processing for artificial insemination (AI). The firstly ejaculated spermatozoa (first 10 ml of the sperm-rich fraction, SRF [P1]) remain mainly exposed to epididymal cauda fluid and its specific proteins i.e. various lipocalins, including the fertility-related prostaglandin D synthase; than to prostatic and initial vesicular gland secretions. P1-spermatozoa are hence exposed to less bicarbonate, zinc or fructose and mainly to PSP-I spermadhesin; than if they were in the rest of the SRF and the post-SRF (P2). Since the P1-SP is less destabilizing for sperm membrane and chromatin, P1-spermatozoa sustain most in vitro procedures, including cryopreservation, the best. Moreover, ejaculated firstly, the P1-spermatozoa seem also those deposited by the boar as a vanguard cohort, thus becoming overrepresented in the oviductal sperm reservoir (SR). This vanguard SR-entry occurs before the endometrial signalling of SP components (as PSP-I/PSP-II and cytokines) causes a massive influx of the innate defensive PMNs to cleanse the uterus from eventual pathogens, superfluous spermatozoa and the allogeneic SP. The SP also conditions the mucosal immunity of the female genital tract, to tolerate the SR-spermatozoa and the semi-allogeneic conceptus. These in vivo gathered data can be extrapolated into procedures for handling boar spermatozoa in vitro for AI and other biotechnologies, including simplified cryopreservation.