This review discusses the possible role of the suppressor of cytokine signaling (SOCS) proteins in mammalian reproduction. SOCS are regulatory proteins that are rapidly transcribed in response to intracellular Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling, a cascade governing biological functions including cytokine-induced immunological responses and reproductive processes. For instance STAT3 appears to mediate trophoblast invasion induced by LIF. The SOCS family includes 8 members (cytokine-inducible SH2 protein [CIS] and SOCS1-7) that orchestrate distinct reactions by antagonizing STAT activation. Emerging evidence points to a role of some family members in synchronizing Th1/Th2 cell profiles, the balance in which is considered vital to pregnancy maintenance. The reproductive phenotypes of mutant mice harboring targeted disruption of SOCS gene isoforms offer insights for reproductive immunology, trophoblast function and human pregnancy. CIS transgenic mice display impaired responses to IL-2 and resemble STAT5 deficient mice, except they are fertile. SOCS1 deficiency leads to an overabundance of IFNgamma signaling, yet SOCS1 null mutant mice are able to reproduce. Lack of SOCS3 is embryonically lethal due to placental insufficiency, while SOCS3 over-expression leads to elevated Th2 responses. SOCS3 seems to be vital for reproduction by regulating LIF-driven trophoblast differentiation. SOCS5 inhibits IL-4 signaling, yet the SOCS5 transgenic mouse has no conspicuous reproductive phenotype. SOCS-6 and SOCS-7 null mutant mice display growth retardation. In summary, SOCS proteins are avidly involved in fine regulation of immunological and other vital cellular responses. Many of the above phenotypes present contradictions to accepted reproductive immunological paradigms.