Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy

J Hematol Oncol. 2009 Oct 27:2:45. doi: 10.1186/1756-8722-2-45.

Abstract

The mammalian target of rapamycin (mTOR) is an intracellular serine/threonine protein kinase positioned at a central point in a variety of cellular signaling cascades. The established involvement of mTOR activity in the cellular processes that contribute to the development and progression of cancer has identified mTOR as a major link in tumorigenesis. Consequently, inhibitors of mTOR, including temsirolimus, everolimus, and ridaforolimus (formerly deforolimus) have been developed and assessed for their safety and efficacy in patients with cancer. Temsirolimus is an intravenously administered agent approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) for the treatment of advanced renal cell carcinoma (RCC). Everolimus is an oral agent that has recently obtained US FDA and EMEA approval for the treatment of advanced RCC after failure of treatment with sunitinib or sorafenib. Ridaforolimus is not yet approved for any indication. The use of mTOR inhibitors, either alone or in combination with other anticancer agents, has the potential to provide anticancer activity in numerous tumor types. Cancer types in which these agents are under evaluation include neuroendocrine tumors, breast cancer, leukemia, lymphoma, hepatocellular carcinoma, gastric cancer, pancreatic cancer, sarcoma, endometrial cancer, and non-small-cell lung cancer. The results of ongoing clinical trials with mTOR inhibitors, as single agents and in combination regimens, will better define their activity in cancer.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / chemical synthesis
  • Cell Transformation, Neoplastic / drug effects*
  • Cell Transformation, Neoplastic / pathology
  • Drug Delivery Systems / methods*
  • Drug Discovery* / methods
  • Humans
  • Intracellular Signaling Peptides and Proteins / antagonists & inhibitors*
  • Intracellular Signaling Peptides and Proteins / chemistry
  • Intracellular Signaling Peptides and Proteins / physiology
  • Models, Biological
  • Neoplasms / drug therapy*
  • Neoplasms / etiology
  • Protein Kinase Inhibitors / administration & dosage
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Serine-Threonine Kinases / antagonists & inhibitors*
  • Protein Serine-Threonine Kinases / chemistry
  • Protein Serine-Threonine Kinases / physiology
  • TOR Serine-Threonine Kinases

Substances

  • Antineoplastic Agents
  • Intracellular Signaling Peptides and Proteins
  • Protein Kinase Inhibitors
  • MTOR protein, human
  • Protein Serine-Threonine Kinases
  • TOR Serine-Threonine Kinases