Pooling clinical specimens reduces the number of assays needed when screening for infectious diseases. Polymerase chain reaction (PCR)-based assays are the most sensitive tests to diagnose malaria, but its high cost limits its use. We adapted a pooling platform that could reduce the number of assays needed to detect malaria infection. To evaluate this platform, two sets of 100 serum samples, with 1% and 5% malaria prevalence, were tested. DNA, extracted from pooled samples, was amplified by malaria-specific PCR. Additional validation was performed by determining the level of PCR detection based on 1:10 and 1:100 dilution. The platform correctly detected all malaria samples in the two test matrices. The use of stored serum samples also has important implications for studies investigating malaria prevalence rates retrospectively. Field studies, using serum and whole blood specimens, are needed to validate this technique for the adaptation of these methods for clinical utility.