Context: Besides (123)I-metaiodobenzylguanidine (MIBG), positron emission tomography (PET) agents are available for the localization of paraganglioma (PGL), including (18)F-3,4-dihydroxyphenylalanine (DOPA), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG), and (18)F-fluorodopamine ((18)F-FDA).
Objective: The objective of the study was to establish the optimal approach to the functional imaging of PGL and examine the link between genotype-specific tumor biology and imaging.
Design: This was a prospective observational study.
Intervention: There were no interventions.
Patients: Fifty-two patients (28 males, 24 females, aged 46.8 +/- 14.2 yr): 20 with nonmetastatic PGL (11 adrenal), 28 with metastatic PGL (13 adrenal), and four in whom PGL was ruled out; 22 PGLs were of the succinate dehydrogenase subunit B (SDHB) genotype.
Main outcome measures: Sensitivity of (18)F-DOPA, (18)F-FDG, and (18)F-FDA PET, (123)I-MIBG scintigraphy, computed tomography (CT), and magnetic resonance imaging (MRI) for the localization of PGL were measured.
Results: Sensitivities for localizing nonmetastatic PGL were 100% for CT and/or MRI, 81% for (18)F-DOPA PET, 88% for (18)F-FDG PET/CT, 78% for (18)F-FDA PET/CT, and 78% for (123)I-MIBG scintigraphy. For metastatic PGL, sensitivity in reference to CT/MRI was 45% for (18)F-DOPA PET, 74% for (18)F-FDG PET/CT, 76% for (18)F-FDA PET/CT, and 57% for (123)I-MIBG scintigraphy. In patients with SDHB metastatic PGL, (18)F-FDA and (18)F-FDG have a higher sensitivity (82 and 83%) than (123)I-MIBG (57%) and (18)F-DOPA (20%).
Conclusions: (18)F-FDA PET/CT is the preferred technique for the localization of the primary PGL and to rule out metastases. Second best, equal alternatives are (18)F-DOPA PET and (123)I-MIBG scintigraphy. For patients with known metastatic PGL, we recommend (18)F-FDA PET in patients with an unknown genotype, (18)F-FDG or (18)F-FDA PET in SDHB mutation carriers, and (18)F-DOPA or (18)F-FDA PET in non-SDHB patients.